CEMENTED CARBIDE WEAR PADS,PARTING AND GROOVING INSERTS,CARBIDE INSERTS

CEMENTED CARBIDE WEAR PADS,PARTING AND GROOVING INSERTS,CARBIDE INSERTS,We offer round, square, radius, and diamond shaped carbide inserts and cutters.

2023年11月

Anca MX7 Linear Increases Taylor Toolworks' Grinding Flexibility

Any shop that aims to meet tooling needs for applications ranging from woodworking to aerospace to general machining and cutting of plastics requires versatility. Taylor Toolworks, a manufacturer and service provider of cutting tools based in Alberta, Canada, says it has found the right technology to stay at the forefront of its market with Anca’s MX7 Linear tool grinder.

Taylor Toolworks, which president Jesse Taylor runs with his sister Kristyn, uses five-axis CNC grinding and fine micro-grain carbide products to maintain Lathe Carbide Inserts the mirror finishes and exacting tolerances needed for high-performance tooling. The shop provides reconditioning services and produces end mills and custom tooling.

Taylor Tookworks’ reconditioning services consist of tool regrinding, recutting and recoating. Its end mills include super-polished flutes, special-grade carbides and performance-enhancing coatings. The custom tooling selection caters mainly to the woodworking and metal industries, with micro-grain carbide inserts, custom profile tools, step drills and other options.

When Taylor Toolworks began to move into the large-diameter carbide tooling market, focusing on tooling with diameters ranging from 1.000 to 1.500 inches, it found that it required greater manufacturing versatility. Taylor had seen Anca machines at trade shows, and initial Helical Milling Inserts conversations with Anca application specialists about the MX7 Linear tool grinder caught his attention. Anca’s swift lead times, which were much faster than the “six months to a year” timeline Taylor observed with other machine tool builders, further helped him make a decision.

The MX7 Linear’s 38-kw (51-horsepower) spindle provided the power Taylor Toolworks needed to tackle large-diameter tool manufacturing. Other features that helped the company achieve high-output, high-precision manufacturing include standard linear scales on the X and Y axes, Anca LinX linear motors for X- and Y-axis motion, an integrated wheel dresser, and automation options, which include the RoboMate or FastLoad-MX compact loader. The machine is designed to accommodate varied batch sizes with minimum setup time. Anca recommends the MX7 Linear for high-volume production of tools ranging to 25 mm (1 inch) in diameter. 

Anca’s MX7 Linear tool grinder also includes a standard six-station wheel changer that stores and changes up to six wheel packs. Taylor particularly credits this feature for helping with rapid setup and flexibility, with the versatility of six-wheel packs “essential” to machining complex geometries like step drills and porting tools with multiple grinding operations. The MX7 Linear’s cylindrical linear motor design also increases reliability to improve the quality of the surface finish.

Taylor also credits Anca’s tool simulation software in his purchasing decision. This software, part of Anca’s ToolRoom software package, allows the shop to virtually program tools on desktops or laptops before processing them on the actual machine. Taylor notes that carrying out these simulations “saves valuable machine time” that allows the shop to stay competitive. The ToolRoom software provides specific applications for each tool produced at Taylor Toolworks, such as a step tool editor and a profile tool editor.

In addition to step drills, Taylor says the shop produces through-coolant drills and form tools on the MX7 Linear. Whenever service issues arise using the MX7 Linear — or any of Taylor Toolworks’ three other Anca machines — Taylor says Anca has done well at solving them, whether through a phone call or an on-site visit.


The Carbide Inserts Blog: http://leanderfit.mee.nu/

Non Woven Stripping Discs Provide Faster Cutting, Increased Life

The SG Blaze Rapid Strip is a non-woven, depressed-center stripping and light-stock-removal disc from Norton, a brand of Saint-Gobain. The disc combines SG ceramic alumina grain and an open mesh structure to increase cutting speed and disc life. This open-structure design enables aggressive cutting on metal surfaces as well as the elimination of loading on sticky coatings, adhesives and soft metals. It also PVD Coated Insert will not snag or shed when used to deburr edges, the company says.

The discs can be used for removal of scale, corrosion or rust on cast iron, steels, aluminum, fiberglass and composites. WNMG Insert They also can be used for cleanup of flashings, epoxies and graffiti from metal, stone and concrete surfaces. Applying heavier pressure to the discs will strip and clean materials, while applying lighter pressure will provide a finish similar to a medium-grit fiber or flap disc, the company says.

The discs are available in sizes measuring 4.5", 5" and 7", and they feature a Type 27/fiberglass backing. 


The Carbide Inserts Blog: https://dnmginsert.bloggersdelight.dk

Job Shop Uses 3D Wire Bending and CNC Machining To Find Its Niche

By and large, shops don’t shape themselves; customers shape shops. That is, customer needs drive decisions about the equipment, capabilities and processes shops bring in-house. As a result, an increasing number of them are looking beyond conventional subtractive machining processes to alternate manufacturing technologies that complement their chip-making equipment. After all, the goal is to deliver whatever product the customer requires in the quickest, most cost-effective way possible.

Marshall Manufacturing is a good example of this trend. For this Minneapolis, Minnesota shop, a medical customer’s need for accurately machined and helically bent wire components spurred the development of a proprietary 3D bending process that works hand-in-hand with the shop’s advanced machining equipment. The process Marshall Manufacturing engineered enables it to machine key features into straight, small-diameter barstock or tubing using Swiss-type lathes or wire EDM units. It then can accurately bend the parts to the correct profile on its modified CNC bending machine. (Traditionally, this procedure is reversed: bending is performed first and machined features are added later, making machining much more challenging.) The shop’s more efficient and effective approach not only enables features to be precisely machined anywhere along the barstock prior to bending, but also ensures that those features end up in their proper locations after the complex bending operations.

Marshall Manufacturing didn’t set out to be a specialist in both machining and 3D bending for wire and tubular medical devices. The company began in the early 1950s as a supplier of precision turned parts largely for automotive and hydraulic applications. Today, the 40-person machining business operates in a 23,000-square-foot, air conditioned facility with 60 percent of its work Machining Carbide Inserts dedicated to the medical industry and 40 percent geared toward filtration equipment (primarily machining plastic core tubes for filtration cartridges). The shop does some general machining, too. It can process numerous materials including stainless steel, titanium, aluminum, brass, bronze, copper and a variety of plastics. It is certified to both ISO 9001:2008 and ISO 13485:2003 standards. Achieving the latter standard has been key to growing the medical side of its business.

That customer’s need for bending work years ago proved to be the game-changer for Marshall Manufacturing. Initially, the customer required machined parts with relatively simple 2D bends. The shop was able to handle that work in-house without too much trouble. After that, though, it was approached to manufacture parts that required more complex Face Milling Inserts helical bends. Having no experience with 3D bending, Marshall Manufacturing searched for an outside vendor to take on that work. It turns out that the only vendor willing to try this complex bending job simply couldn’t handle it, so the shop decided to create a 3D bending process of its own. After successfully developing its manual bending process, however, production volumes for this work increased. At that point it became readily apparent that the shop needed a more efficient CNC bending technique to keep pace with growing demand.

Many of the bent medical components the shop manufactures are partially overmolded with a plastic handle. One example is known as introducers, which are components used by surgeons to position organ-supportive slings during minimally invasive incontinence procedures. Depending on the device manufacturer, the geometries of both ends of these devices differ (they might be straight, wedge-shaped, tapered or slotted).

Most machining for these wire components is accomplished using Swiss-type lathes. The shop has nine such machines, but the bulk of the work is performed on its four L20 Swiss-types from Marubeni Citizen-Cincom (Allendale, New Jersey). These seven-axis machines accommodate barstock diameters ranging from 0.1 to 0.75 inch and include Marubeni Citizen-Cincom’s own CAV20-IS bar feeding system. Although the shop has had bar feeding snafus with its other Swiss-types, it says this hasn’t been a problem with the L20s because the bar feed system is designed to work specifically with those machines. Such reliability as well as programming simplicity are big reasons why the shop has since settled on Marubeni Citizen-Cincom as its Swiss-type supplier.

Each L20 machine has a main spindle and a secondary spindle that share machining operations. The main spindle offers maximum rotational speed of 10,000 rpm while the secondary spindle offers 8,000 rpm. With their signature supportive guide bushing design, these machines are particularly effective for the long, small-diameter barstock material Marshall Manufacturing machines for the introducers. That’s because the guide bushing provides workpiece support at the point of the cut, minimizing workpiece deflection and vibration. Plus, in addition to milling, drilling and turning, these multifunction machines can perform broaching, honing, knurling, burnishing, hobbing, thread whirling and thread rolling. This often eliminates the need for secondary operations on another machine.

The wire components the shop produces—many of them made from stainless steel—begin as 12-foot lengths of centerless-ground barstock. Precision barstock is nearly always used with Swiss-type turning centers to ensure that the material can be fed through the guide bushing without sticking. Ground barstock offers diameter accuracy to 0.0002 inch. Such precision is important when a plastic handle is to be molded over the component to ensure proper shut-off on the part during molding. Similarly, the accuracy of drilled cross holes is important because the holes are sometimes used to locate the part on a pin inside a mold. The same is true for flats and other features that may be used to help orient the part prior to the CNC bending operation.

The four L20 Swiss-types are located together in a cell. Each has a gripper that delivers completed components out of the machine. The parts are delivered down a chute and collected when the machines run in normal mode. For high-volume jobs, however, the machines can serve as an unmanned production cell. A Fanuc gantry robot within the cell picks completed parts from the L20s and delivers them to an ultrasonic cleaning station. This station includes its own small Fanuc robot, which takes each part through three separate ultrasonic baths to remove chips and cutting fluid. After the cleaning and rinse cycles, parts are blown dry. The gantry robot’s jaws are also cleaned and blown dry prior to delivering finished parts into a Tesa Scan 50 non-contact measuring system for final inspection. This device can measure length, diameter, angles, radii and other features on cylindrically symmetric components.

Wire EDM is commonly used to produce tip features in tubular stock. The shop has two Fanuc Robocut wire EDM units with automatic wire feed (these machines are available from Methods Machine Tools). System 3R clamping components allow quick relocation of fixtures on the machine’s table. That way, an operator can set up a job on one fixture while the machine runs another job. The shop stacks multiple tubes to be machined simultaneously. Slots created via wire EDM can be held to 0.0002 inch.

Once machining is completed, the tubing or barstock is delivered to the shop’s 3D CNC bending machine. The shop (which won’t disclose the brand of the bending machine it uses) has developed an innovative combination of tooling and automation for unattended operation.

The eight-axis bending machine accommodates tubing diameters ranging from 0.096 to 0.375 inch and barstock diameters from 0.08 to 0.2 inch. In operation, the machine’s actuator arm picks up a machined length of barstock from a staging magazine, while a sensor ensures the material is properly oriented according to a machined feature. A guide helps send the wire through the machine’s three mandrels. The 3D bending operation is accomplished via choreographed movement of the mandrels and rotating actuator arm. Programming is done at the machine using shop-developed macros to fine-tune basic bending programs.

Marshall Manufacturing has a number of measuring devices. However, machining plays a role in bent-part inspection. The shop machines go/no-go gages like the ones on the previous page for many of the 2D and 3D medical components it manufactures. The parts drop into the gage and locate off of a part feature, typically a tip, flat or shank. A properly bent part will not contact the gage’s machined profile walls or exceed the height of the machined channel. The shop performs 100-percent inspection of its bent components. This is important because spring-back associated with the bending process can differ based on the material. This also enables the shop to detect bends that are trending out of tolerance so offsets can be made at the bender’s CNC to compensate.

The shop typically machines three gages—one for its own use, a second for its molding vendor to check parts prior to molding handles, and a third for its customer. Tolerances for bends are based on design requirements. Bend consistency is very important for these devices. For some parts with basic 2D bends, the shop will use a simple yet effective paper printout outlining the part’s allowable limits to the bend profile.

Proficiency in 3D CNC bending has the shop looking outside the medical industry for appropriate applications that require bent wire or tubular components with accurately machined features. The shop is also hoping to capitalize more on the multifunction machining capabilities and precision its Swiss-types offer. In particular, it is investigating cannulated bonescrew work using thread whirling. Its goal is to grow its medical work to represent 75 percent of its total business.


The Carbide Inserts Blog: http://philiposbo.mee.nu/

How Do You Get The Cutting Parameters Right For Small End Mills?

A reader recently used the “Ask an Expert” feature of our Micromachining Zone to ask about realizing the correct cutting parameters when using small milling tools.

Question

I struggle with the speeds and feed rates for "small" ball end mills (0.03125, 0.040, 0.0625) when cutting our typical tool steels such as P-20, A2, and H13. We are limited to a maximum spindle speed of 15,000 rpm. Do you concentrate on the sfm for finish end mills of the same diameter, or do you consider that the center of the ball is going to push harder for a given feed per tooth? Then, when lace cutting, the stepover becomes my next challenge. When I do feel confident with my feed and speed, I am SNMG Insert unsure of my stepover or depth of cut.

Response from John Bradford, micromachining R&D team leader for Makino

Your question is one we see commonly. I would like to assure you that although 15,000 rpm will limit your capabilities, you still have a reasonable range of performance on tools down to 1 mm or so in diameter. However, I think you will find that your maximum feed rates will be limited by that speed, since the bottom line really is maintaining consistent chip load. Tools smaller than 0.03125 inch will certainly need higher rpm for effective feed rate and surface finish.

I would like to address your question by considering three important factors, the most important of which is the first one:

1. Runout

I am assuming that when you say you struggle with these smaller Surface Milling Inserts cutters, you are experiencing premature cutter wear and breakage. For small cutting tool applications, the most serious problem I see is that people assume the tool tip, and therefore each cutting tool flute, is rotating with no runout. Generally, standard tools in standard toolholders only provide for a minimum tool tip runout of 0.0005 inch. This is not generally a problem with larger tools, but is devastating for small tools, and will result in premature tool breakage and poor surface finish. People tend to respond to this by slowing down the feed rate to reduce chip load.

Recommendations:
● If you are using collet holders, be aware that standard ER collets are not sufficient for providing runout of less than 0.010 mm. UP-style collets may get you down to 0.005 mm, but that is still too much. Look for ultra precision collet systems that have dynamic runout of 0.001 mm and below. (See this article.)
● Do not assume that the cutting flute is concentric with the shank of your tool. It is common to see flute runout of 0.010 mm or more relative to the tool shank. This is yet another issue that should be addressed, since it contributes to dynamic tool tip runout.

2. Cutting Tools

We typically recommend a carbide with TiCN or AlTiN coatings. For hardened materials, and for these small diameter tools, we recommend you do not use 4 flute cutters. Use 2 flute cutters, since the chip removal is much more efficient from the large gullet.

3. Depth of Cut

Generally, for carbide tools at small diameters, we use the following guidelines for maximum depths of cut:
● 30-40Hrc Materials—50% radial / 10% axial
● 41-50Hrc Materials—45% radial / 6% axial
● 51-60Hrc Materials—40% radial / 5% axial

For the corresponding chip load, although you should always check your tool supplier guidelines, I think you could use up to a 0.001 inch per tooth chip load to start. As a generic guideline, we recommend chip load relative to cutter diameter as follows:

Above 55Hrc
Roughing: 3% of cutter diameter
Semi: 2%
Finishing: 1%

Below 55Hrc
Rough: 5%
Semi: 3%
Finish: 1-2%


The Carbide Inserts Blog: https://ccmtinsert.bloggersdelight.dk

Improving Quality, Productivity And Tool Life With High Performance Chip Handling

Continuous improvement—most of the time it is painstakingly slow...squeezing out small-tolerance refinements, fractions of more parts per hour or minor ergonomic enhancements. Rare are those instances where the improvements are significant, and they are even more exceptional when what happens is secondary to the project's intentions. That's exactly what has played out at American Showa, Inc., a supplier to the automotive, motorcycle and marine industries. The company produces shock absorbing suspension components and front forks for automobiles and motorcycles, power steering units for vehicles and marine applications, and power tilt and trim mechanisms for boat motors.

According to production engineer Sam Shaaban at the company's Blanchester, Ohio, facility, American Showa wanted to modify the plant's floorplan in order to improve the physical flow between two machines that are designed to rough and finish the deep precision bores of two different cast aluminum housings. (American Showa casts the parts at the Blanchester facility.)

"Years ago, when the plant was set up, the two machines were placed close to one another because they were similar in design and machine similar parts through similar processes," says Mr. Shaaban. "After studying the situation, we decided that our workinprocess flow and inventory levels could be better served if the machining operations were separated and followed a more logistical path for each part and its subsequent operations. The move, however, entailed more than just physically relocating the machines. While each machine had its own auger mechanism for removing chips, both were tied together via a centralized drum-type "filtering' unit and overhead pipe coolant system." So in moving the machines, a new method for removing chips and cleaning the coolant had to be devised. The company was having difficulties in this area, too.

"Our major problem with the old chip and coolant system was that long, stringy chips produced in the process would tangle, become nests and grow to the point where the auger was useless. Or the auger would grind up the chips to such a small size that they would not be removed from the system. The operator associates would have to manually fork out and clean the machines," says Mr. Shaaban.

"We also had some foaming of the coolant in the overhead pipes as the filter drum became clogged with chips and restricted flow. We had three hoppers (one for the central system, one each for operators to load) taking up valuable floor space."

American Showa decided on the ConSep 2000, a chip separator conveyor/coolant filtration unit from Mayfran International (Cleveland, Ohio). The ConSep 2000 system is designed to replace traditional turning or machining chip conveyors. While it requires a little bit more space, it cleans and filters coolant at the same time. The basic unit, which can be easily modified to suit application heights and lengths, handles many types of swarf, including ferrous and nonferrous strings, turnings, fines, curls and nests.

The two ConSep 2000 units were delivered to American Showa, and the installation process was completed over a two-week period. The standard ConSep system consists of a hinged and perforated steel belt conveyor for larger chips and strings, plus a lower drag conveyor and filter drum for removal of fines. Large chips and strings are simply carried away to the chip discharge chute by the steel conveyor as coolant flows down to the lower area containing the drag conveyor and filter drum. The coolant is maintained at a level below the height of the steel conveyor, draining residual fluid from chips plus minimizing coolant foaming conditions and the problem of floating chips.

The filter unit separates fines to 50 micron nominal and features a self-cleaning, pressurized backwash for the drum's poly fiber media. After the backwash cycle, the lower conveyor then picks up and carries off the fines. The over/under location Cemented Carbide Inserts of the two discharge chutes allows chips and fines to be collected in the same hopper. The pressurized backwash system for the mesh filter means less downtime.

"We made one modification to each of the new systems," Mr. Shaaban states, "in that we salvaged two pumps from the old system and installed them as booster pumps in the coolant lines. With this addition, we're operating at up to 75 psi (previously, it was, at most, 50 psi) and pumping approximately 50 gallons per minute through each machine. The higher pressure helps to break the strings, and the volume assures that coolant is reaching cutting edges deep in the bores while each machine tool and fixture is flushed."

Since installation of the two ConSep 2000 units, now in operation for approximately one year, the primary concern at American WNMG Insert Showa has been eliminated. "Virtually all of the chips, strings and nests are thoroughly flushed and carried away from the machines," says Mr. Shaaban. "Associates no longer have to take the time to manually clean the machines. But, after a year, the results in other areas that we did not fully anticipate have been even more dramatic. First, our tool life expectancy has increased. We used to run about 1,200 pieces before making tool changes; now that number averages 10,000 parts per tool. At the same time, we were able to increase feed rates, and the overall effect—between decreased downtime for tool changes and the faster feeds—has been a near doubling of our productivity. The old auger system had trouble handling 1.4 pounds of chips per hour; our new ConSep systems are removing up to 2.8 pounds.

"Since the installation, our scrap rate, typically resulting from unsatisfactory surface finishes, has decreased by 20 percent. Because no other changes were made other than the new chip handling and coolant cleaning, we assume that these productivity, quality and cost advantages are the result of cleaner, contaminate free coolant," Mr. Shaaban says.


The Carbide Inserts Blog: https://dnmginsert.bloggersdelight.dk
カテゴリ別アーカイブ
  • ライブドアブログ